Conditions of Use

Select a section:

1. Acceptance of Terms

This Terms and Conditions agreement (”Agreement”) is between Small Talk Events and its affiliated entities (collectively, “Small Talk Events,” “we” or “ours”) and you and your agents (”you” or “yours”) for the use of this web site (the “Site”). By using the Site, you agree to this Agreement. By accessing this web site, you are agreeing to be bound by these web site Terms and Conditions of Use, all applicable laws and regulations, and agree that you are responsible for compliance with any applicable local laws. If you do not agree with any of these terms, you are prohibited from using or accessing this site. The materials contained in this web site are protected by applicable copyright and trade mark law.
Back to top

2. Ownership of Site and Restrictions on use of Content

The Site is managed by Small Talk Events. You acknowledge that this Site may contain information, communications, software, photos, text, video, graphics, music, sounds, images and other material and services (collectively “Content”), which is generally provided by Small Talk Events or by licensors of Small Talk Events. You agree and acknowledge that, notwithstanding that Small Talk Events permits access to the Content, the Content or its use or the use of this Site is protected by patents, copyrights, trademarks, and other proprietary rights (including intellectual property rights), that these rights are valid and protected in all media now existing or later developed, and that except as specifically provided in this Agreement, your use of the Content shall be governed and constrained by applicable patent, copyright, trademark and other intellectual property laws. Modification or use of the Site and/or the Content for any commercial purpose is a violation of patent, copyright and other proprietary rights owned by Small Talk Events and third parties. In addition to Small Talk Events’ and its licensors’ rights in individual elements of the Content, Small Talk Events owns the copyright in the selection, coordination, arrangement and enhancement of the Content. You may not modify, publish, transmit, participate in the transfer or sale of, reproduce, create derivative works from, distribute, perform, display, incorporate into another website, or in any other way exploit the Site and/or any of the Content, in whole or in part, without the prior express written permission of Small Talk Events.

Permission is granted to temporarily download one copy of the materials (information or software) on Small Talk Events’s web site(s) for personal, non-commercial transitory viewing only. This is the grant of a license, not a transfer of title, and under this license you may not:

  • modify or copy the materials;
  • use the materials for any commercial purpose, or for any public display (commercial or non-commercial);
  • attempt to decompile or reverse engineer any software contained on Small Talk Events’s web site;
  • remove any copyright or other proprietary notations from the materials; or
  • transfer the materials to another person or “mirror” the materials on any other server.

This license shall automatically terminate if you violate any of these restrictions and may be terminated by Small Talk Events at any time. Upon terminating your viewing of these materials or upon the termination of this license, you must destroy any downloaded materials in your possession whether in electronic or printed format.
Back to top

3. Access to Services and Termination of Access

In order to register for this event you may be asked for your name, e-mail address, company name, work address, phone number, and other identifying information (”Personal Information”). The Personal Information is linked directly to your registered email address and can only be retrieved by requesting and then opening a hyperlink sent to the correct registered email address. You are entirely responsible for maintaining the security and confidentiality of your email account and access to it. FURTHERMORE, YOU ARE ENTIRELY RESPONSIBLE FOR ANY AND ALL ACTIVITIES AND CONDUCT, WHETHER BY YOU OR ANYONE ELSE, THAT ARE CONDUCTED THROUGH YOUR REGISTERED EMAIL ADDRESS. You agree to notify Small Talk Events immediately of any unauthorised use of your email account or any other breach of security. Small Talk Events will not be liable for any loss or damages of any kind that may arise as a result of you or someone else using your email account, either with or without your knowledge. You acknowledge and agree that Small Talk Events may terminate your access privileges and remove and discard any Content without notice to you for any reason, including without limitation, if (i) Small Talk Events believes that you have violated any provision of this Agreement, and/or (ii) you have otherwise acted or failed to act in any manner that Small Talk Events deems objectionable. You agree that any termination of your access to the Site shall not result in any liability or other obligation of Small Talk Events to you or any third party in connection with such termination.
Back to top

4. Cancellation and Refunds

All cancellation requests must be in writing and delivered by post or e-mail at the number and address provided here.. A refund of the fee, minus a $75 administrative fee, will be given for cancellations that are received in a timely manner.

Event Cancellation

Should the refund be granted by the organising committee, the refund will be paid directly to the applicant’s bank account or to the credit card used to make the original payment.
Back to top

5. Disclaimer of Warranties

The use of the site is solely at your own risk. The materials on Small Talk Events’ web site are provided “as is”. Small Talk Events makes no warranties, expressed or implied, and hereby disclaims and negates all other warranties, including without limitation, implied warranties or conditions of merchantability, fitness for a particular purpose, or non-infringement of intellectual property or other violation of rights. Further, Small Talk Events does not warrant or make any representations concerning the accuracy, likely results, or reliability of the use of the materials on its Internet web site or otherwise relating to such materials or on any sites linked to this site.
Back to top

6. Limitations

In no event shall Small Talk Events or its suppliers be liable for any damages (including, without limitation, damages for loss of data or profit, or due to business interruption,) arising out of the use or inability to use the materials on Small Talk Events’ Internet site, even if Small Talk Events or a Small Talk Events authorized representative has been notified orally or in writing of the possibility of such damage. Because some jurisdictions do not allow limitations on implied warranties, or limitations of liability for consequential or incidental damages, these limitations may not apply to you.
Back to top

7. Revisions and Errata

The materials appearing on Small Talk Events’ web site could include technical, typographical, or photographic errors. Small Talk Events does not warrant that any of the materials on its web site are accurate, complete, or current. Small Talk Events may make changes to the materials contained on its web site at any time without notice. Small Talk Events does not, however, make any commitment to update the materials.
Back to top

8. Links

Small Talk Events has not reviewed all of the sites linked to its Internet web site and is not responsible for the contents of any such linked site. The inclusion of any link does not imply endorsement by Small Talk Events of the site. Use of any such linked web site is at the user’s own risk.
Back to top

9. Site Terms of Use Modifications

Small Talk Events may revise these terms of use for its web site at any time without notice. By using this web site you are agreeing to be bound by the then current version of these Terms and Conditions of Use.
Back to top

10. Jurisdiction

This website (excluding any linked third-party websites) is operated by Small Talk Events. By accessing this website you accept that any disputes arising out of your use of this website or its contents shall be governed by the courts having jurisdiction in Australia in accordance with the laws in force in Australia. This website may be accessed throughout Australia and overseas. Small Talk Events makes no representation that the material on this website complies with the laws of any country outside Australia. This Agreement shall be governed by and construed in accordance with the law of Australia, and all international governance is expressly excluded. If you access this website from outside Australia you are responsible for ensuring compliance with all applicable laws in the place where you are located.
Back to top

11. Your Conduct on the Site

In the event that Small Talk Events permits you to upload, post, e-mail or otherwise transmit content, data, information or other materials (collectively, “User Content”) for display on the Site or otherwise, you will be responsible for all such User Content that you upload, post, email or otherwise transmit using the Site. Likewise, you are responsible for complying with all third party rights with respect to all such User Content that appears on the Site and not to download, email or otherwise transmit such User Content in violation of such third party’s rights. By submitting User Content to Small Talk Events, you automatically grant, or warrant that the owner of such Content has expressly granted, the royalty-free, perpetual, irrevocable, non-exclusive right and license to use, reproduce, modify, adapt, publish, translate, create derivative works from, distribute, perform and display such User Content (in whole or part) worldwide and/or to incorporate it in other works in any form, media, or technology now known or later developed for the full term of any rights that may exist in such User Content.

You are expressly prohibited from placing any message in any User Content or any product, good or service or otherwise transmitting through or posting on the Site (including in any e-mail message or any chat board posting) any unlawful, harmful, threatening, abusive, harassing, defamatory, vulgar, obscene, sexually explicit, profane, hateful, racial, ethnic or otherwise objectionable material of any kind, including without limitation, any material that encourages conduct that would constitute a criminal offense, give rise to civil liability, or otherwise violate any applicable local, state, national or international law (collectively, “Prohibited Conduct”). Prohibited Conduct expressly includes any transmission to people or other entities on mailing lists that you do not have full rights to use. You agree and acknowledge that Small Talk Events is not responsible or liable to you or any other party or user of the Site for any Prohibited Conduct by you or any other party or user of the Site.

You may not collect or store personal data of other users of the Site without the prior, written permission of such user(s).

You may not directly or indirectly, intentionally disrupt or interfere with the Site in any manner that may adversely affect Small Talk Events or any user of the Site.

You may not upload, post, email or otherwise transmit any material that contains software viruses or any other code, files or programs designed or known to disable, interrupt, or limit the functionality of any computer hardware, computer software, or telecommunications equipment or facilities.
Back to top

12. Indemnity

You agree to defend, indemnify and hold Small Talk Events, its subsidiaries, affiliates, officers, directors, employees and agents, harmless from and against any third party claim, action or demand (”Claim”) and all liabilities and settlements related thereto, including without limitation, reasonable legal and accounting fees, resulting from, or alleged to result from, your use of the Site and/or its Content and/or User Content. Small Talk Events shall provide notice to you promptly of such Claim and shall reasonably cooperate with you, at your expense, in your defense of any such Claim.
Back to top

13. Trademark Information

The Site may contain references to Small Talk Events’ and other entities’ trademarks and service marks. Such references are for identification purposes only and are used with permission of their respective owners. Small Talk Events’ trademarks may not be used for any commercial use without the prior express written consent of Small Talk Events. You may not use Small Talk Events trademarks in any way that would cause confusion, disparagement, unfair competition or in a manner that would appear to create some association with Small Talk Events or Small Talk Events’ products or services.
Back to top

14. How To Contact Us

If you have a query in relation to these Terms and Conditions please contact Small Talk Events as follows:

Small Talk Events
PO Box 490
West Ryde NSW 1685
T 0422 116 849
Back to top

Simon Cool
Director of the UQ Advanced Cell Therapy Manufacturing Initiative, and Director of Research in the School of Chemical Engineering at the University of Queensland

Professor Cool began his scientific career at the University of Queensland over 20 years ago. He received his BSc (hons) and PhD degrees from the University of Queensland, where he subsequently held a faculty position in the School of Biomedical Sciences. His areas of study have included age-related changes in the structure of bone and teeth and the extracellular matrix compartment of skeletal tissue that guide stem cell behaviour and wound repair. Professor Cool was invited to join the Institute of Molecular and Cell Biology (IMCB), A*STAR, Singapore in 2003 as a Principal Investigator. He then joined A*STAR’s Institute of Medical Biology (IMB) in 2008, shortly after its inception, to further his research in regenerative medicine, serving as Senior Principal Investigator of the Glycotherapeutics Group. In October 2020, Professor Cool re-joined the Institute of Molecular and Cell Biology (IMCB) as a Research Director, Glycotherapeutics, where he focused on developing novel glycosaminoglycan biomolecules that enhance wound repair and control adult human mesenchymal stem cell activity. Professor Cool returned to the University of Queensland, joining the School of Chemical Engineering in January 2022.

Amanda Kijas
Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Australia

Dr Amanda W. Kijas is a multidisciplinary researcher based at The University of Queensland, leading a new wound healing research program focused on interrogating the underlying science and how we can leverage this to develop innovative new approaches to wound healing products. Repurposing nature’s innovation to instruct better wound healing outcomes from the first stage of bleeding control to driving ordered and timely wound regeneration. With a focus on instructing cellular responses through the biophysical cues that act in synergy with the biochemical microenvironment to modulate these dynamic spatiotemporal cellular responses.

Kendelle Murphy
Garvan Institute of Medical Research, Australia

Dr Kendelle Murphy is a Senior Research Officer in the Cancer Invasion and Metastasis Laboratory at the Garvan Institute of Medical Research. Cancer develops in a complex three-dimensional environment, where tumour cell communication with the surrounding stroma governs cancer cell behaviour. Dr Murphy uses novel state-of-the-art intravital (in vivo, ACRF INCITe Centre) imaging approaches to provide new insights into how cells behave in a physiologically relevant environment, thereby improving our understanding of disease progression, drug delivery and efficacy. Pancreatic Ductal Adenocarcinoma (PDAC) is a highly lethal disease with few treatment options. Multimodal chemotherapy regimens including gemcitabine/Abraxane and FOLFIRINOX are the current standard-of-care in the clinic, however these have limited benefits to extend survival. Focal Adhesion Kinase (FAK) is known to modulate bi-directional communication between the tumour and surrounding ECM driving disease, influencing disease progression, therapy response and the development of pro-tumorigenic fibrosis.
As a CINSW (ECR) Fellow Dr Murphy conducts research has a clear focus on clinical translation. Importantly this research led to the establishment of a Phase II clinical trial (Amplia Therapeutics Ltd, ACCENT Trial, Q3 2022), highlighting the translational and collaborative capacity of her work.

Kylie Sandy-Hodgetts
Centre for Molecular Medicine & Innovative Therapeutics, Murdoch University, Australia

Kylie is Associate Professor, Centre for Molecular Medicine & Innovative Therapeutics, Murdoch University and Honorary Senior Lecturer, School of Medicine, Cardiff University. She is Founder and President of a not-for-profit association, the International Surgical Wound Complications Advisory Panel (ISWCAP). ISWCAP’s vision is to generate awareness of surgical wound complications and improve outcomes for patients through early detection, and prevention via education and research with an international panel of experts. Kylie is a Research Scientist and Chief Investigator of several clinical trials ranging from Phase 1 first in human studies to phase 3-4 comparative effectiveness trials. Kylie’s research focuses upon early identification, prevention and management of surgical wound complications including surgical site infection (SSI) and surgical wound dehiscence (SWD). Kylie has Chaired and co-authored over 5 international clinical consensus documents, first authored over 25 original research papers and chaired the ISWCAP Best Practice Statement on the early identification and prevention of surgical wound complications. She is a reviewer for peer reviewed journals and sits on several journal editorial boards.
She is a Past Chair of the Board of Wounds Australia and has served on several national and international boards including the World Union of Wound Healing Societies (WUWHS) Executive Board as Recorder and the Scientific and Ethics Committee. Kylie Chaired the Australian National Steering Committee Surgical Wounds Panel and Wound Research Directory for the Australian Health Research Alliance National Wound Care Initiative (2020-2023). She was acknowledged internationally for her contribution to the field of surgical site infection prevention as the 2021 Winner of the Journal of Wound Care World Union Innovation in Surgical Site Infection Award.

Fiona Wood
UWA Medical School, University of Western Australia, Australia

Winthrop Professor Fiona Wood University of Western Australia is a Plastic & Reconstructive Surgeon specialising in the field of burn care, trauma, and scar reconstruction. As Director of the WA Burns Service of Western Australia since 1991 she is consultant surgeon at both the South Metropolitan Heath Service, Fiona Stanley Hospital and the Child and Adolescent Health Service, Perth Children’s Hospital. As director of burns injury research unit she leads an interdisciplinary team with broad collaboration focused on translation to improve clinical outcomes. She sits on the national science and technology council and was Australian of the year in 2005.

Khoon Lim
School of Medical Sciences, University of Sydney, Australia

Khoon is a biomedical engineer with specialization in polymer chemistry. He completed a concurrent degree – Bachelors (Hons 1) in Chemical Engineering and Masters in Biomedical Engineering, followed by a PhD in Biomedical Engineering (graduated 2014) from the University of New South Wales. He then went to join the Department of Orthopedic Surgery and Musculoskeletal Medicine at the University of Otago Christchurch in New Zealand for a postdoctoral fellowship, where he established the Light Activated Biomaterials (LAB) research group in 2019. In 2022, he joined the University of Sydney.
His research focus is on adopting a class of polymers known as hydrogels as tissue engineering matrices for a variety of applications. His has developed a number of research technology platforms, primarily using photo-polymerizable hydrogel bioinks for 3D bioprinting of functional tissues and also delivery of bioactive molecules to promote tissue regeneration. He has successfully raised a total of >$8M research grant funding ($6.5M as lead CI). He has been awarded a number of New Zealand’s most prestigious grants and fellowships, including the MARSDEN Fast Start Grant and Rutherford Discovery Fellowship from the Royal Society of New Zealand, as well as the Emerging Researcher First Grant, Sir Charles Hercus Health Research Fellowship and Project Grant from the Health Research Council of New Zealand. Since his move to Australia, he has been successful in attracting funding in a number of prestigious schemes, including the NSW Health Cardiovascular Elite Grant and the Australian Research Council Future Fellowship.

Ferry Melchels
Future Industries Institute, University of South Australia, Australia

Ferry Melchels is the research professor of Biomaterials and Tissue Engineering at the Future Industries Institute at UniSA (Mawson Lakes campus). His main interests lie in polymeric biomaterials for 3D printing, tissue engineering, and drug and vaccine delivery. His work has been published in leading journals, attracting over 16,000 citations. He is a recipient of the Patrick Neill Medal for Early Career Researchers in the Life Sciences from the Royal Society of Edinburgh, and the Mid-Career Investigator Award from the International Society for Biofabrication.
Ferry holds an MSc (2005) in chemical engineering and PhD (2010) in biomaterials from the University of Twente (The Netherlands). He was a Marie Curie post-doctoral fellow between two of the pioneering institutes in Biofabrication; Queensland University of Technology (Brisbane, Australia) and University Medical Center Utrecht (The Netherlands) and held his first PI position at Heriot-Watt University in Edinburgh (UK) from 2015-2023. Besides home brewing the best beers on the weekend, his future aim is to continue advancing materials-based technology platforms for biomedical applications.

Clair Baldock
Professor of Biochemistry at the Manchester Cell-Matrix Centre, University of Manchester, UK

Clair Baldock is a Professor of Biochemistry at the University of Manchester and Group Leader in the Manchester Cell-Matrix Centre. After a PhD in X-ray crystallography at the University of Sheffield, Clair was awarded a Royal Society Study Visit to the University of Auckland to develop further skills in protein biochemistry and molecular biology in Professor Ted Baker’s group. Following this, Clair completed postdoctoral training in the group of Professor Cay Kielty at the University of Manchester and was subsequently awarded a Royal Society Olga Kennard Research Fellowship in 2001 to establish her independent research group with focus on the structure and function of cell-matrix assemblies and complexes, in particular elastic fibre proteins fibrillin and tropoelastin. In 2007, Clair was awarded a tenured position at the University of Manchester where her research group continues to focus on the extracellular regulation of growth factor signalling using a combination of structural, cell biological and biochemical approaches. Recently, her team has determined the structure of fibrillin microfibrils from mammalian tissue using cryo-electron microscopy to reveal the consequence of pathogenic mutations on latent TGFβ binding.

Jennifer Young
Mechanobiology Institute, National University of Singapore, Singapore

Jennifer Young was trained as a biomedical engineer at the University of California, San Diego. During her Ph.D. with Prof. Adam Engler, she studied the role of mechanics in cardiac development, and created a hydrogel system capable of mimicking dynamic tissue properties in vitro. Inspired by the role of extracellular matrix (ECM) in dictating cell behaviour and fate, she joined the Cellular Biophysics group of Prof. Joachim Spatz at the Max Planck Institute for Medical Research (Heidelberg, Germany) to study the contribution of nanoscale ECM cues to cellular function. There, she discovered that variations in nanoscale ligand presentation alone affect chemoresistance in breast cancer cells, which has great implications in cancer treatment strategies. Currently she is at the Mechanobiology Institute and Biomedical Engineering Department at the National University of Singapore where her work focuses on identifying and mimicking micro-to-nanoscale matrix properties and unravelling their contributions to cellular behaviour in a diverse set of biological environments.

Andrew Holle
Mechanobiology Institute, National University of Singapore, Singapore

Andrew Holle received a Bachelor of Science, Engineering (B.S.E) from Arizona State University, where he worked in labs of Dr. Christine Pauken and Dr. Deirdre Meldrum. He then received his Ph.D. at the University of California, San Diego, where he worked in Dr. Adam Engler’s Stem Cell Biology and Bioengineering group. There, he identified the mechanosensitive role of the focal adhesion protein vinculin in substrate stiffness-induced stem cell differentiation. Looking to explore the commonalities between stem cell and cancer mechanobiology, he then joined Prof. Joachim Spatz’s Cellular Biophysics group at the Max Planck Institute for Medical Research (Stuttgart, Germany). There, he used photolithography and microfluidics to build microchannel assays to better characterize cancer cell invasion and migration in confinement. His Confinement Mechanobiology lab at the Mechanobiology Institute and in the NUS Biomedical Engineering department focuses on the role of confinement in mechanobiology, with an emphasis on novel strategies for controlling stem cell differentiation.

Alexander Nyström
Department of Dermatology, Medical Center – University of Freiburg, Freiburg, Germany

Dr Nyström’s main focus is the extracellular matrix and the dermal microenvironment in homeostasis and as initiator and driver of chronic wounds, fibrosis and cancer. To understand the multifaceted roles of the extracellular matrix, its specific components and their deficiencies play in these processes, it is necessary to go beyond the skin. Dr Nyström has an interest in the monogenetic skin blistering disorder dystrophic epidermolysis bullosa (DEB) (caused by deficiency of type VII collagen). People with DEB develop chronic wounds, progressive soft tissue fibrosis and aggressive SCCs at an early age. My group uses the disease as a model to delineate mechanisms for orphan genetic and common acquired disorders. Consequently, part of our research is focused on development of causative and evidence-based symptom-relief therapies for DEB. The aim is that some of these therapies can also be applied to common acquired wound healing pathologies.
Dr Nyström studied biochemistry and molecular biology at Lund University, Sweden and obtained a doctoral degree from the same university for studies on laminins in health and acquired and genetic diseases in the laboratory of the late Dr. Peter Ekblom. After postdoctoral work on proteoglycans in the laboratory of Dr. Renato Iozzo at the Thomas Jefferson University in Philadelphia, following Dr Nyström moved to the laboratory of Dr. Bruckner-Tuderman Freiburg, Germany to focus his research on skin biology. Since 2013 Alexander has his own independent research group at the Department of Dermatology, Medical Center – University of Freiburg, Freiburg Germany.

Claudia Loebel
Assistant Professor of Materials Science & Engineering at the University of Michigan, USA

Claudia Loebel, M.D. Ph.D., is an Assistant Professor of Materials Science & Engineering and a Biological Sciences Scholar at the University of Michigan, US. She obtained her MD (2011) at the Martin-Luther University Halle-Wittenberg in Germany and PhD (2016) at ETH Zurich (Switzerland) and completed a postdoctoral fellowship in the laboratory of Professor Jason Burdick at the University of Pennsylvania. Her research involves the development of metabolic labelling approached and biomaterial platforms to characterize and uncover the role of nascent matrix microenvironments on cell and tissue function. The applications of this research range from guiding lung alveolar stem/progenitor cell fate through material cues to developing engineered platforms for tissue repair and therapeutic treatment. Claudia Loebel is currently serving as an Associate Editor of the Wiley Journal of Biomedical Materials Research Part A (JBMRA). She was awarded the 2023 David and Lucile Packard Foundation Fellowship for her work on cell-matrix interactions, and the Pathway to Independence Award (K99/R00) through the National Heart, Lung, and Blood Institute at NIH and the Innovator Award through the American Lung Association to probe mechanisms of alveolar epithelial cell dysfunction.

Yuval Rinkevich
Director of the Helmholtz Institute of Regenerative Biology and Medicine at the Helmholtz Center, Munich, Germany

Dr. Rinkevich has been working at the cutting edge of our understanding of tissue/organ repair and regeneration for the last 20 years. The scientific focus of the Rinkevich lab lies in identifying principles of tissue/organ repair and regeneration, and developing a knowledge foundation for therapeutic strategies in clinical use. His lab explores the stem cells, cellular lineages and mechanisms by which tissues/organs repair and regenerate following injury.

His passion for healing responses and tissue rejuvenation can be traced throughout his career track, obtaining his PhD degree from the Technion-Israel Institute of Technology, where he studied whole body regeneration from single blood vessels in Protochordates. Dr Rinkevich moved to Stanford University in the US to join the renowned immunology lab of Prof. Irving L. Weissman, where he explored the cellular lineages and stem cells in mammalian tissue repair and regeneration. His work at Stanford projected Dr Rinkevich into the forefront of the tissue repair field for his pioneering work uncovering the role of fibroblast lineages in the transition from scarless to scar forming tissue responses.

Today Dr Rinkevich is the Director of the Helmholtz Institute of Regenerative Biology and Medicine at the Helmholtz Center, Munich, Germany. His lab continues to push forward our understanding of tissue/organ repair and regeneration. His latest work describing the fascia in tissue fibrosis in multiple organ systems is reinventing the way we look at tissue repair and regeneration, opening our minds to a revolution in antifibrotic therapy and the potential to prevent and potentially resolve fibrotic disease.

Hello world.

This is a sample box, with some sample content in it.

TEMTIA X Updates

Enter your details below to learn about the latest developments as we prepare for TEMTIA X in November.